Protein encoded by oncogene 6b from Agrobacterium tumefaciens has a reprogramming potential and histone chaperone-like activity
نویسندگان
چکیده
Crown gall tumors are formed mainly by actions of a group of genes in the T-DNA that is transferred from Agrobacterium tumefaciens and integrated into the nuclear DNA of host plants. These genes encode enzymes for biosynthesis of auxin and cytokinin in plant cells. Gene 6b in the T-DNA affects tumor morphology and this gene alone is able to induce small tumors on certain plant species. In addition, unorganized calli are induced from leaf disks of tobacco that are incubated on phytohormone-free media; shooty teratomas, and morphologically abnormal plants, which might be due to enhanced competence of cell division and meristematic states, are regenerated from the calli. Thus, the 6b gene appears to stimulate a reprogramming process in plants. To uncover mechanisms behind this process, various approaches including the yeast-two-hybrid system have been exploited and histone H3 was identified as one of the proteins that interact with 6b. It has been also demonstrated that 6b acts as a histone H3 chaperon in vitro and affects the expression of various genes related to cell division competence and the maintenance of meristematic states. We discuss current views on a role of 6b protein in tumorigenesis and reprogramming in plants.
منابع مشابه
An oncoprotein from the plant pathogen agrobacterium has histone chaperone-like activity.
Protein 6b, encoded by T-DNA from the pathogen Agrobacterium tumefaciens, stimulates the plant hormone-independent division of cells in culture in vitro and induces aberrant cell growth and the ectopic expression of various genes, including genes related to cell division and meristem-related class 1 KNOX homeobox genes, in 6b-expressing transgenic Arabidopsis thaliana and Nicotiana tabacum plan...
متن کاملThe protein encoded by oncogene 6b from Agrobacterium tumefaciens interacts with a nuclear protein of tobacco.
The 6b gene in the T-DNA from Agrobacterium has oncogenic activity in plant cells, inducing tumor formation, the phytohormone-independent division of cells, and alterations in leaf morphology. The product of the 6b gene appears to promote some aspects of the proliferation of plant cells, but the molecular mechanism of its action remains unknown. We report here that the 6b protein associates wit...
متن کاملT-6b allocates more assimilation product for oil synthesis and less for polysaccharide synthesis during the seed development of Arabidopsis thaliana
BACKGROUND As an Agrobacterium tumefaciens T-DNA oncogene, T-6b induces the development of tumors and the enation syndrome in vegetative tissues of transgenic plants. Most of these effects are related to increases in soluble sugar contents. To verify the potential roles of T-6b in the distribution of carbon in developing seeds, not in vegetative tissues, we fused an endosperm-specific promoter ...
متن کاملRecognition of the Agrobacterium tumefaciens VirE2 translocation signal by the VirB/D4 transport system does not require VirE1.
Agrobacterium tumefaciens uses a type IV secretion system to deliver a nucleoprotein complex and effector proteins directly into plant cells. The single-stranded DNA-binding protein VirE2, the F-box protein VirF and VirE3 are delivered into host cells via this VirB/D4 encoded translocation system. VirE1 functions as a chaperone of VirE2 by regulating its efficient translation and preventing Vir...
متن کاملConstitutive Expression Exposes Functional Redundancy between the Arabidopsis Histone H2A Gene HTA1 and Other H2A Gene Family Members OA
The Arabidopsis thaliana histone H2A gene HTA1 is essential for efficient transformation of Arabidopsis roots by Agrobacterium tumefaciens. Disruption of this gene in the rat5mutant results in decreased transformation. InArabidopsis, histone H2A proteins are encoded by a 13-member gene family. RNA encoded by these genes accumulates to differing levels in roots and whole plants; HTA1 transcripts...
متن کامل